Homepage

 

 

 

Sharonda LeBlanc​Sharonda recently defended her Ph.D. dissertation, entitiled: "Electric field dependent spectroscopy of single nanocrystal systems" in front of a packed audience. She completed the work under the supervision of Dr. Patrick Moyer (Physics and Optical Science) and Dr. Marcus Jones (Chemistry) and will soon be starting a postdoctoral position with Dr. Gloria Elliot (Mechanical Engineering and Engineering Science) at UNC Charlotte.


Winner of the ACS Nano-tations Video Contest
Nano Girls: An epic tale of 3 guys' quest to use nanotechnology for solar cells.
ACS video contest: How will nano change the world?


Journal of Biotechnology & Bio-materials Editorial

NANOVEHICLES FOR INTRACELLULAR PROTEIN DELIVERY

Juan L Vivero-Escoto
Department of Chemistry, University of North Carolina at Charlotte
The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte 


 Protein therapeutics holds significant promise for improving human health [1,2]. Our organism contains thousands of proteins, which perform essential functions in growth, development and metabolism regulation. Many diseases arise from the alterations in the functions of intracellular proteins [1]. Therefore, the administration of therapeutic proteins has shown great potential in the treatment of many diseases, including cancer and diabetes. Protein therapeutics has emerged since the 1980s and represents currently a significant part of biopharmaceuticals [2]. For example, Lantus®, an engineered protein (insulin) was one of the top ten selling biopharmaceuticals in 2009 [1]. Moreover, protein drugs with much better therapeutic performance are developed every year. The pharmaceutical research and manufacturers of...

Read More

Nanoscale Science - Faculty in Focus

Welcome to the Walter Research Group in the Chemistry Department at UNC Charlotte. We are interested in the synthesis and development of new materials for Solar Energy Conversion. Photoactive materials such as porphyrins are developed in our lab can be used to harvest solar photons and convert that energy into either electricity or into a fuel such as hydrogen. Our work involves testing these materials in organic solar cell, dye-sensitized TiO2 solar cell, or photoelectrochemical cell configurations. Our work spans materials research, organic syntheses, and nanoscience.